The Other Eukaryotes…
Endosymbiotic Theory, Kingdom Protista

The Origin of Eukaryotic Cells

- Eukaryotic cells appeared first around 1.7 billion years ago
 - Some bacterial cells possess an internal structure called a nucleus
- Some bacterial cells have infoldings of their outer membranes extending into the interior
 - The endoplasmic reticulum (ER) and nuclear envelope of eukaryotes is thought to have evolved from this

Origin of the nucleus and endoplasmic reticulum.

- The endosymbiotic theory is a widely accepted explanation for the origin of energy-producing organelles in eukaryotes from bacteria
 - Present-day mitochondria and chloroplasts still contain their own DNA
 - This DNA is remarkably similar in size and character to the DNA of bacteria

The theory of endosymbiosis.

The Evolution of Sex

- A profound difference between prokaryotes and eukaryotes is that eukaryotes have the capacity for sexual reproduction
 - Sexual reproduction involves two parents contributing gametes to form the offspring
 - Gametes are usually formed by meiosis and are haploid
 - The resulting offspring are diploid
- But sexual reproduction is not the only way that eukaryotes can reproduce
 - Many eukaryotes reproduce by asexual reproduction, which is reproduction without forming gametes
 - The offspring of asexual reproduction are genetically identical to the parents
 - Many eukaryotes reproduce mainly by asexual reproduction, switching to sexual reproduction only during environmental stress

Reproduction among paramecia.

- A different asexual strategy in eukaryotes is parthenogenesis, the development of an adult from an unfertilized egg
- Many plants and marine fishes undergo a form of sexual reproduction that does not involve partners
 - This is called self-fertilization and involves one individual providing both male and female gametes
- The advantages of sexual reproduction are not immediately obvious
the segregation of chromosomes that occurs in meiosis tends to disrupt advantageous combinations of genes

- sexual reproduction may have evolved in protists because the diploid cell stage allows for chromosomal repair
 - double-strand breaks occur in the DNA are induced by dessication
 - the environmental stress of drying out triggers the diploid stage
 - perhaps the pairing up of chromosomes in the early stages of meiosis evolved originally as a mechanism for repairing double-strand damage
 - the undamaged version as a template could be used as template to guide the fixing of the damaged one

- sexual reproduction is one of the most important evolutionary innovations of eukaryotes
 - it provides a means of shuffling genes, creating genetic diversity
 - genetic diversity is the raw material of evolution
 - the greater the genetic diversity, the more rapid the evolutionary pace

- the sexual life cycle involves the production of haploid gametes by meiosis, followed by the union of two gametes in sexual reproduction

- eukaryotes are characterized by three major types of sexual life cycles
 - zygotic meiosis
 - gametic meiosis
 - sporic meiosis

- in zygotic meiosis, the zygote formed by the fusion of gametes is the only zygote cell
 - this type of sexual life cycle is common to many algae
 - the zygote is the only cell that undergoes meiosis
 - haploid cells occupy the major portion of the life cycle

Three types of Eukaryotic Life Cycles

(a) Zygotic meiosis.

- in gametic meiosis, the gametes are the only haploid cells
 - this sexual life cycle is common to most animals
 - meiosis produces the gametes
 - the diploid zygote occupies the major portion of the life cycle

Three types of Eukaryotic Life Cycles

(b) Gametic meiosis.

- in sporic meiosis, the spore-forming cells undergo meiosis
 - this life cycle is common to plants
- in plants, there is a regular **alternation of generations** between a haploid phase and a diploid phase
- the diploid phase produces spores that give rise to the haploid phase
- the haploid phase produces gametes that fuse to give rise to the diploid phase

General Biology of Protists, the Most Ancient Eukaryotes
- protists are eukaryotes united on the basis of a single *negative* characteristic
 - they are not fungi, plants, or animals
 - in all other respects, they are highly variable with no uniting features

A unicellular protist.

- cell surface varies among protists
 - all protists have plasma membranes
 - some, like algae and molds, have cell walls
 - others, like diatoms and radiolarians, secrete glassy shells of silica

- locomotor organelles also vary among protists
 - protists move by means of cilia, flagella, pseudopods or gliding mechanisms

- cyst formation occurs in protists who, despite having delicate surfaces, persist in harsh habitats
 - **cysts** are dormant forms of a cell with a resistant outer covering
 - in dormancy, the cell metabolism is more or less completely shut down

- protists employ a variety of forms of nutritional acquisition
 - one exception, however, is chemoautotrophy, which is known only from prokaryotes
 - some protists are photosynthetic autotrophs, called **prototrophs**
 - among the heterotrophic protists, there are
 - **phagotrophs** that ingest visible particles of food
 - **osmotrophs** that ingest food in soluble form

- protists typically reproduce asexually
 - sexual reproduction is resorted only in times of stress
- asexual reproduction involves an usual form of mitosis
 - the nuclear membrane usually persists throughout mitosis and the spindle apparatus forms within the nucleus
- asexual reproduction in protists may involve spore formation or fission
 - the most common type of fission is **binary fission**, in which a cell simply splits into two nearly equal halves
 - another type of fission is called **budding**

- asexual reproduction in protists may involve spore formation or fission
• the most common type of fission is **binary fission**, in which a cell simply splits into two nearly equal halves
• another type of fission is called **budding**
 • In this case, the progeny cell is considerably smaller than its parent and then must grow to adult size
• multiple fission is called **schizogony** and is preceded by several nuclear divisions
 • this form of fission produces several individuals almost simultaneously

• sexual reproduction also takes place in many forms among protists
 ▪ **gametic meiosis** occurs in ciliates and some flagellates
 ▪ **zygotic meiosis** occurs in the sporozoans
 ▪ **sporic meiosis** occurs in the algae, producing an alternation of generations similar to that of plants

• being a single-celled organism presents certain problems
 ▪ size is limited due to surface-to-volume ratio problems

• the evolution of multicellularity alleviates the size constraints
 ▪ a multicellular organism is composed of many cells
 ▪ having multiple cells allows for specialization
 • distinct cell types can have different functions
 • this is a “division of labor”

• many protists form colonial assemblies consisting of many cells with little differentiation or integration
 ▪ a **colonial organism** is a collection of cells that are permanently associated but in which little or no integration of cell activities occurs

 A colonial protist.

• an **aggregation** is a more transient collection of cells that come together for a period of time and then separate
 ▪ for example, individual amoeboid cells of cellular slime molds come together to form an aggregate called a slug
 • the slug allows the aggregate of slime mold cells to move to a new feeding location as a unit

• true multicellularity occurs only in eukaryotes
 ▪ it requires that the activities of individual cells be coordinated and that the cells be in contact

• three groups of protists have independently evolved multicellularity
 ▪ brown algae (Phylum Phaeophyta)
 ▪ green algae (Phylum Chlorophyta)
• red algae (Phylum Rhodophyta)

• but not all types of algae are multicellular; there are also unicellular varieties

Classifying the Protists
• protists are the most diverse of the four kingdoms in the domain Eukarya
 ▪ there are 15 distinct phyla of protists
 ▪ taxonomists group the protists into five general groups according to some of the major shared characteristics
 ▪ the phyla of protists are, with very few exceptions, only distantly related to one another

The major protist groups.
• the characteristics used in broad attempts to classify the kingdom Protista include
 ▪ the presence or absence and type of cilia or flagella
 ▪ the presence and kinds of pigments
 ▪ the type of mitosis
 ▪ the kinds of cristae present in the mitochondria
 ▪ the molecular genetics of the ribosomal “S” subunit
 ▪ the kind of inclusions the protists may have
 ▪ overall body form
 ▪ whether the protists has a shell or other “body armour”
 ▪ modes of nutrition and movement

Kinds of Protists

Heterotrophs with No Permanent Locomotor Apparatus
• the largest of the five groups of protists are distinguished by having no permanent locomotor apparatus

• they are all heterotrophic and comprise three phyla
 ▪ Rhizopoda—amoebas
 ▪ Foraminifera—forams
 ▪ Actinopoda—radiolarians

• amoebas lack flagella and cell walls
• they move using pseudopodia, flowing projections of cytoplasm
• amoebas are abundant in soil and many are parasitic in animals
• reproduction is entirely asexual

• forams possess rigid cells and move by cytoplasmic streaming
• they are marine protists with pore-studded shells called tests
• long, thin, cytoplasmic projections called podia radiate through the test pores and are used for swimming and capturing prey
Heterotrophs with No Permanent Locomotor Apparatus

• radiolarians look like amoebas but have a glassy skeleton
• needlelike pseudopods look like thorns radiating out from the body

Heterotrophs with Flagella

• Sarcomastigophora is a strictly heterotrophic phylum
• the members of this phylum are called zoomastigotes and are flagellated
• the flagellated ancestor of all animals appears to have been a member of this group

Heterotrophs with Flagella

• ciliates belong to the phylum Ciliophora and all members possess large numbers of cilia
• ciliates have a defined cell shape and two nuclei per cell
• the pellicle is a proteinaceous scaffold, found inside the plasma membrane, that confers flexible support
• asexual reproduction is by fission while sexual reproduction is by conjugation

Heterotrophs with Restricted Mobility

• slime molds and water molds are heterotrophic protists and not fungi
 ▪ protistan molds have cell walls made of cellulose
 ▪ protistan molds carry out normal mitosis
 ▪ there are three unrelated phyla of protistan molds

Heterotrophs with Restricted Mobility

• cellular slime molds belong to the phylum Acrasiomycota
 ▪ although more closely resembling amoebas, the members of this phylum can form aggregates in times of stress

Heterotrophs with Restricted Mobility

• plasmodial slime molds belong to the phylum Myxomycota
• the cells in members of this phylum stream long as a plasmodium, a nonwalled multinucleate mass of cytoplasm
• the plasmodium can withstand drying out or starvation by dividing into spore-producing mounds

Heterotrophs with Restricted Mobility

• water molds belong to the phylum Oomycota
• all members of this grouping either parasitize living organisms or feed on dead organic matter
• many water molds are important plant pathogens

Photosynthetic protists

• dinoflagellates are members of the phylum Pyrrhophyta
• they are photosynthetic unicellular protists, usually bearing two flagella of unequal
These flagella beat uniquely, beating the body like a spinning top
• dinoflagellates reproduce asexually using a unique type of mitosis in which their chromosomes remain condensed

Dinoflagellates.

Photosynthetic Protists
• euglenoids belong to the phylum Euglenophyta and have two flagella
 ▪ about one-third are photosynthetic and have chloroplasts
 ▪ the remaining types lack chloroplasts and are heterotrophic
 ▪ the photosynthetic forms can become heterotrophic when light levels are low

Photosynthetic protists
• some dinoflagellates produce powerful toxins
 ▪ “red tides” are population explosions of these kinds of dinoflagellates

Photosynthetic Protists
• *Euglena* is a representative euglenoid
 • it possesses a pellicle like ciliates
 • it has a contractile vacuole to help regulate the osmotic pressure within the organism
 • it has a light-sensitive stigma which helps this photosynthetic form find light
 • reproduction in this group is entirely asexual

Photosynthetic Protists
• diatoms are photosynthetic protists that belong to the phylum Chrysophyta
 • they are encased by unique double wall of silica
 • they reproduce by either asexual or sexual reproduction

Photosynthetic Protists
• the phylum Chrysophyta, in addition to diatoms, also includes the golden algae
 • the golden algae do not resemble the three phyla of true algae in any important aspect
 • they are named because pigments in their chloroplasts give them a golden color
 • they can be unicellular or colonial and occur in freshwater only
 • they can form resistant cysts when ponds and lakes dry out in summer

Photosynthetic Protists
• red algae comprise the phylum Rhodophyta and have red pigments
 • most are multicellular and marine
 • they grow more deeply than other photosynthetic algae

 • the laboratory medium component, agar, is made from red algae

Photosynthetic Protists
• green algae are members of the phylum Chlorophyta and are of evolutionary interest because the ancestor of plants belonged to this group
- green algal chloroplasts are similar to plants and contain similar chlorophyll types
- green algae are mostly mobile and aquatic but a few species occur in moist soil or on tree trunks

Green algae.

Photosynthetic Protists
- most green algae are microscopic and unicellular, but some are intermediate or colonial, while others are large and multicellular
- some green algae, like *Ulva*, exhibit an alternation of generations between a multicellular haploid gametophyte and a multicellular diploid sporophyte

A green algae life cycle: *Ulva*.

Photosynthetic Protists
- brown algae comprise the phylum Phaeophyta
- these algae are the longest, fastest-growing, and most photosynthetically productive living things
- they are conspicuous seaweeds in the ocean
 - for example, kelp may grow to over 100 m
- all are multicellular and most are marine
- their life cycle has alternating generations

Nonmotile Spore-Formers
- sporozoans belong to the phylum Apicomplexa
- they are nonmotile, unicellular, parasites that form spores
- they cause many diseases in humans and domestic animals
- they have complex life cycles that involve both asexual and sexual phases, often involving an alternation between different hosts

A sporozoan life cycle.